2023-09-23 14:39:09 +06:00

313 lines
10 KiB
HLSL

// CRT shader
//
// Copyright (C) 2010-2012 cgwg, Themaister and DOLLS
//
// This program is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 of the License, or (at your option)
// any later version.
// Comment the next line to disable interpolation in linear gamma (and gain speed).
//#define LINEAR_PROCESSING
#include "ReShadeUI.fxh"
uniform float Amount < __UNIFORM_SLIDER_FLOAT1
ui_min = 0.0; ui_max = 1.0;
ui_tooltip = "Amount of CRT effect you want";
> = 1.00;
uniform float Resolution < __UNIFORM_SLIDER_FLOAT1
ui_min = 1.0; ui_max = 8.0;
ui_tooltip = "Input size coefficient (low values gives the 'low - res retro look').";
> = 1.15;
uniform float Gamma < __UNIFORM_SLIDER_FLOAT1
ui_min = 0.0; ui_max = 4.0;
ui_tooltip = "Gamma of simulated CRT";
> = 2.4;
uniform float MonitorGamma < __UNIFORM_SLIDER_FLOAT1
ui_min = 0.0; ui_max = 4.0;
ui_tooltip = "Gamma of display monitor";
> = 2.2;
uniform float Brightness < __UNIFORM_SLIDER_FLOAT1
ui_min = 0.0; ui_max = 3.0;
ui_tooltip = "Used to boost brightness a little.";
> = 0.9;
uniform int ScanlineIntensity < __UNIFORM_SLIDER_INT1
ui_min = 2; ui_max = 4;
ui_label = "Scanline Intensity";
> = 2;
uniform bool ScanlineGaussian <
ui_label = "Scanline Bloom Effect";
ui_tooltip = "Use the new nongaussian scanlines bloom effect.";
> = true;
uniform bool Curvature <
ui_tooltip = "Barrel effect";
> = false;
uniform float CurvatureRadius < __UNIFORM_SLIDER_FLOAT1
ui_min = 0.0; ui_max = 2.0;
ui_label = "Curvature Radius";
> = 1.5;
uniform float CornerSize < __UNIFORM_SLIDER_FLOAT1
ui_min = 0.00; ui_max = 0.02; ui_step = 0.001;
ui_label = "Corner Size";
ui_tooltip = "Higher values => more rounded corner";
> = 0.0100;
uniform float ViewerDistance < __UNIFORM_SLIDER_FLOAT1
ui_min = 0.0; ui_max = 4.0;
ui_Label = "Viewer Distance";
ui_tooltip = "Simulated distance from viewer to monitor";
> = 2.00;
uniform float2 Angle < __UNIFORM_SLIDER_FLOAT2
ui_min = -0.2; ui_max = 0.2;
ui_tooltip = "Tilt angle in radians";
> = 0.00;
uniform float Overscan < __UNIFORM_SLIDER_FLOAT1
ui_min = 1.0; ui_max = 1.10; ui_step = 0.01;
ui_tooltip = "Overscan (e.g. 1.02 for 2% overscan).";
> = 1.01;
uniform bool Oversample <
ui_tooltip = "Enable 3x oversampling of the beam profile (warning : performance hit)";
> = true;
#include "ReShade.fxh"
#define CeeJay_aspect float2(1.0, 0.75)
// A bunch of useful values we'll need in the fragment shader.
#define sinangle sin(Angle)
#define cosangle cos(Angle)
#define stretch maxscale()
// Macros.
#define FIX(c) max(abs(c), 1e-5);
#ifndef PI
#define PI 3.1415927
#endif
// The size of one texel, in texture-coordinates.
#define coone 1.0 / rubyTextureSize
#define mod_factor tex.x * rubyTextureSize.x * rubyOutputSize.x / rubyInputSize.x
#ifdef LINEAR_PROCESSING
#define TEX2D(c) pow(tex2D(ReShade::BackBuffer, (c)), Gamma)
#else
#define TEX2D(c) tex2D(ReShade::BackBuffer, (c))
#endif
float intersect(float2 xy)
{
float A = dot(xy,xy) + (ViewerDistance * ViewerDistance);
float B = 2.0 * (CurvatureRadius * (dot(xy, sinangle) - ViewerDistance * cosangle.x * cosangle.y) - ViewerDistance * ViewerDistance);
float C = ViewerDistance * ViewerDistance + 2.0 * CurvatureRadius * ViewerDistance * cosangle.x * cosangle.y; //all constants
return (-B - sqrt(B * B -4.0 * A * C)) / (2.0 * A);
}
float2 bkwtrans(float2 xy)
{
float c = intersect(xy);
float2 _point = float2(c, c) * xy;
_point -= float2(-CurvatureRadius, -CurvatureRadius) * sinangle;
_point /= float2(CurvatureRadius, CurvatureRadius);
float2 tang = sinangle / cosangle;
float2 poc = _point / cosangle;
float A = dot(tang, tang) + 1.0;
float B = -2.0 * dot(poc, tang);
float C = dot(poc, poc) - 1.0;
float a = (-B + sqrt(B * B -4.0 * A * C)) / (2.0 * A);
float2 uv = (_point - a * sinangle) / cosangle;
float r = CurvatureRadius * acos(a);
return uv * r / sin(r / CurvatureRadius);
}
float2 fwtrans(float2 uv)
{
float r = FIX(sqrt(dot(uv, uv)));
uv *= sin(r / CurvatureRadius) / r;
float x = 1.0 - cos(r / CurvatureRadius);
float D = ViewerDistance / CurvatureRadius + x * cosangle.x * cosangle.y + dot(uv, sinangle);
return ViewerDistance * (uv * cosangle - x * sinangle) / D;
}
float3 maxscale()
{
float2 c = bkwtrans(-CurvatureRadius * sinangle / (1.0 + CurvatureRadius / ViewerDistance * cosangle.x * cosangle.y));
float2 a = float2(0.5, 0.5) * CeeJay_aspect;
float2 lo = float2(fwtrans(float2(-a.x, c.y)).x, fwtrans(float2(c.x,-a.y)).y) / CeeJay_aspect;
float2 hi = float2(fwtrans(float2(+a.x, c.y)).x, fwtrans(float2(c.x, +a.y)).y) / CeeJay_aspect;
return float3((hi + lo) * CeeJay_aspect * 0.5, max(hi.x - lo.x, hi.y - lo.y));
}
float2 transform(float2 coord, float2 textureSize, float2 inputSize)
{
coord *= textureSize / inputSize;
coord = (coord - 0.5) * CeeJay_aspect * stretch.z + stretch.xy;
return (bkwtrans(coord) / float2(Overscan, Overscan) / CeeJay_aspect + 0.5) * inputSize / textureSize;
}
float corner(float2 coord, float2 textureSize, float2 inputSize)
{
coord *= textureSize / inputSize;
coord = (coord - 0.5) * float2(Overscan, Overscan) + 0.5;
coord = min(coord, 1.0 - coord) * CeeJay_aspect;
float2 cdist = float2(CornerSize, CornerSize);
coord = (cdist - min(coord, cdist));
float dist = sqrt(dot(coord, coord));
return clamp((cdist.x-dist) * 1000.0, 0.0, 1.0);
}
// Calculate the influence of a scanline on the current pixel.
//
// 'distance' is the distance in texture coordinates from the current
// pixel to the scanline in question.
// 'color' is the colour of the scanline at the horizontal location of
// the current pixel.
float4 scanlineWeights(float distance, float4 color)
{
// "wid" controls the width of the scanline beam, for each RGB channel
// The "weights" lines basically specify the formula that gives
// you the profile of the beam, i.e. the intensity as
// a function of distance from the vertical center of the
// scanline. In this case, it is gaussian if width=2, and
// becomes nongaussian for larger widths. Ideally this should
// be normalized so that the integral across the beam is
// independent of its width. That is, for a narrower beam
// "weights" should have a higher peak at the center of the
// scanline than for a wider beam.
if (!ScanlineGaussian)
{
float4 wid = 0.3 + 0.1 * pow(abs(color), 3.0);
float4 weights = float4(distance / wid);
return 0.4 * exp(-weights * weights) / wid;
}
else
{
float4 wid = 2.0 * pow(abs(color), 4.0) + 2.0;
float4 weights = (distance / 0.3).xxxx;
return 1.4 * exp(-pow(abs(weights * rsqrt(0.5 * wid)), abs(wid))) / (0.2 * wid + 0.6);
}
}
float3 AdvancedCRTPass(float4 position : SV_Position, float2 tex : TEXCOORD) : SV_Target
{
// Here's a helpful diagram to keep in mind while trying to
// understand the code:
//
// | | | | |
// -------------------------------
// | | | | |
// | 01 | 11 | 21 | 31 | <-- current scanline
// | | @ | | |
// -------------------------------
// | | | | |
// | 02 | 12 | 22 | 32 | <-- next scanline
// | | | | |
// -------------------------------
// | | | | |
//
// Each character-cell represents a pixel on the output
// surface, "@" represents the current pixel (always somewhere
// in the bottom half of the current scan-line, or the top-half
// of the next scanline). The grid of lines represents the
// edges of the texels of the underlying texture.
float Input_ratio = ceil(256 * Resolution);
float2 Resolution = float2(Input_ratio, Input_ratio);
float2 rubyTextureSize = Resolution;
float2 rubyInputSize = Resolution;
float2 rubyOutputSize = BUFFER_SCREEN_SIZE;
float2 orig_xy = Curvature ? transform(tex, rubyTextureSize, rubyInputSize) : tex;
float cval = corner(orig_xy, rubyTextureSize, rubyInputSize);
// Of all the pixels that are mapped onto the texel we are
// currently rendering, which pixel are we currently rendering?
float2 ratio_scale = orig_xy * rubyTextureSize - 0.5;
float filter = fwidth(ratio_scale.y);
float2 uv_ratio = frac(ratio_scale);
// Snap to the center of the underlying texel.
float2 xy = (floor(ratio_scale) + 0.5) / rubyTextureSize;
// Calculate Lanczos scaling coefficients describing the effect
// of various neighbour texels in a scanline on the current
// pixel.
float4 coeffs = PI * float4(1.0 + uv_ratio.x, uv_ratio.x, 1.0 - uv_ratio.x, 2.0 - uv_ratio.x);
// Prevent division by zero.
coeffs = FIX(coeffs);
// Lanczos2 kernel.
coeffs = 2.0 * sin(coeffs) * sin(coeffs / 2.0) / (coeffs * coeffs);
// Normalize.
coeffs /= dot(coeffs, 1.0);
// Calculate the effective colour of the current and next
// scanlines at the horizontal location of the current pixel,
// using the Lanczos coefficients above.
float4 col = clamp(mul(coeffs, float4x4(
TEX2D(xy + float2(-coone.x, 0.0)),
TEX2D(xy),
TEX2D(xy + float2(coone.x, 0.0)),
TEX2D(xy + float2(2.0 * coone.x, 0.0)))),
0.0, 1.0);
float4 col2 = clamp(mul(coeffs, float4x4(
TEX2D(xy + float2(-coone.x, coone.y)),
TEX2D(xy + float2(0.0, coone.y)),
TEX2D(xy + coone),
TEX2D(xy + float2(2.0 * coone.x, coone.y)))),
0.0, 1.0);
#ifndef LINEAR_PROCESSING
col = pow(abs(col) , Gamma);
col2 = pow(abs(col2), Gamma);
#endif
// Calculate the influence of the current and next scanlines on
// the current pixel.
float4 weights = scanlineWeights(uv_ratio.y, col);
float4 weights2 = scanlineWeights(1.0 - uv_ratio.y, col2);
#if __RENDERER__ < 0xa000 && !__RESHADE_PERFORMANCE_MODE__
[flatten]
#endif
if (Oversample)
{
uv_ratio.y = uv_ratio.y + 1.0 / 3.0 * filter;
weights = (weights + scanlineWeights(uv_ratio.y, col)) / 3.0;
weights2 = (weights2 + scanlineWeights(abs(1.0 - uv_ratio.y), col2)) / 3.0;
uv_ratio.y = uv_ratio.y - 2.0 / 3.0 * filter;
weights = weights + scanlineWeights(abs(uv_ratio.y), col) / 3.0;
weights2 = weights2 + scanlineWeights(abs(1.0 - uv_ratio.y), col2) / 3.0;
}
float3 mul_res = (col * weights + col2 * weights2).rgb * cval.xxx;
// dot-mask emulation:
// Output pixels are alternately tinted green and magenta.
float3 dotMaskWeights = lerp(float3(1.0, 0.7, 1.0), float3(0.7, 1.0, 0.7), floor(mod_factor % ScanlineIntensity));
mul_res *= dotMaskWeights * float3(0.83, 0.83, 1.0) * Brightness;
// Convert the image gamma for display on our output device.
mul_res = pow(abs(mul_res), 1.0 / MonitorGamma);
float3 color = TEX2D(orig_xy).rgb * cval.xxx;
color = lerp(color, mul_res, Amount);
return saturate(color);
}
technique AdvancedCRT
{
pass
{
VertexShader = PostProcessVS;
PixelShader = AdvancedCRTPass;
}
}