// CRT shader // // Copyright (C) 2010-2012 cgwg, Themaister and DOLLS // // This program is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by the Free // Software Foundation; either version 2 of the License, or (at your option) // any later version. // Comment the next line to disable interpolation in linear gamma (and gain speed). //#define LINEAR_PROCESSING #include "ReShadeUI.fxh" uniform float Amount < __UNIFORM_SLIDER_FLOAT1 ui_min = 0.0; ui_max = 1.0; ui_tooltip = "Amount of CRT effect you want"; > = 1.00; uniform float Resolution < __UNIFORM_SLIDER_FLOAT1 ui_min = 1.0; ui_max = 8.0; ui_tooltip = "Input size coefficient (low values gives the 'low - res retro look')."; > = 1.15; uniform float Gamma < __UNIFORM_SLIDER_FLOAT1 ui_min = 0.0; ui_max = 4.0; ui_tooltip = "Gamma of simulated CRT"; > = 2.4; uniform float MonitorGamma < __UNIFORM_SLIDER_FLOAT1 ui_min = 0.0; ui_max = 4.0; ui_tooltip = "Gamma of display monitor"; > = 2.2; uniform float Brightness < __UNIFORM_SLIDER_FLOAT1 ui_min = 0.0; ui_max = 3.0; ui_tooltip = "Used to boost brightness a little."; > = 0.9; uniform int ScanlineIntensity < __UNIFORM_SLIDER_INT1 ui_min = 2; ui_max = 4; ui_label = "Scanline Intensity"; > = 2; uniform bool ScanlineGaussian < ui_label = "Scanline Bloom Effect"; ui_tooltip = "Use the new nongaussian scanlines bloom effect."; > = true; uniform bool Curvature < ui_tooltip = "Barrel effect"; > = false; uniform float CurvatureRadius < __UNIFORM_SLIDER_FLOAT1 ui_min = 0.0; ui_max = 2.0; ui_label = "Curvature Radius"; > = 1.5; uniform float CornerSize < __UNIFORM_SLIDER_FLOAT1 ui_min = 0.00; ui_max = 0.02; ui_step = 0.001; ui_label = "Corner Size"; ui_tooltip = "Higher values => more rounded corner"; > = 0.0100; uniform float ViewerDistance < __UNIFORM_SLIDER_FLOAT1 ui_min = 0.0; ui_max = 4.0; ui_Label = "Viewer Distance"; ui_tooltip = "Simulated distance from viewer to monitor"; > = 2.00; uniform float2 Angle < __UNIFORM_SLIDER_FLOAT2 ui_min = -0.2; ui_max = 0.2; ui_tooltip = "Tilt angle in radians"; > = 0.00; uniform float Overscan < __UNIFORM_SLIDER_FLOAT1 ui_min = 1.0; ui_max = 1.10; ui_step = 0.01; ui_tooltip = "Overscan (e.g. 1.02 for 2% overscan)."; > = 1.01; uniform bool Oversample < ui_tooltip = "Enable 3x oversampling of the beam profile (warning : performance hit)"; > = true; #include "ReShade.fxh" #define CeeJay_aspect float2(1.0, 0.75) // A bunch of useful values we'll need in the fragment shader. #define sinangle sin(Angle) #define cosangle cos(Angle) #define stretch maxscale() // Macros. #define FIX(c) max(abs(c), 1e-5); #ifndef PI #define PI 3.1415927 #endif // The size of one texel, in texture-coordinates. #define coone 1.0 / rubyTextureSize #define mod_factor tex.x * rubyTextureSize.x * rubyOutputSize.x / rubyInputSize.x #ifdef LINEAR_PROCESSING #define TEX2D(c) pow(tex2D(ReShade::BackBuffer, (c)), Gamma) #else #define TEX2D(c) tex2D(ReShade::BackBuffer, (c)) #endif float intersect(float2 xy) { float A = dot(xy,xy) + (ViewerDistance * ViewerDistance); float B = 2.0 * (CurvatureRadius * (dot(xy, sinangle) - ViewerDistance * cosangle.x * cosangle.y) - ViewerDistance * ViewerDistance); float C = ViewerDistance * ViewerDistance + 2.0 * CurvatureRadius * ViewerDistance * cosangle.x * cosangle.y; //all constants return (-B - sqrt(B * B -4.0 * A * C)) / (2.0 * A); } float2 bkwtrans(float2 xy) { float c = intersect(xy); float2 _point = float2(c, c) * xy; _point -= float2(-CurvatureRadius, -CurvatureRadius) * sinangle; _point /= float2(CurvatureRadius, CurvatureRadius); float2 tang = sinangle / cosangle; float2 poc = _point / cosangle; float A = dot(tang, tang) + 1.0; float B = -2.0 * dot(poc, tang); float C = dot(poc, poc) - 1.0; float a = (-B + sqrt(B * B -4.0 * A * C)) / (2.0 * A); float2 uv = (_point - a * sinangle) / cosangle; float r = CurvatureRadius * acos(a); return uv * r / sin(r / CurvatureRadius); } float2 fwtrans(float2 uv) { float r = FIX(sqrt(dot(uv, uv))); uv *= sin(r / CurvatureRadius) / r; float x = 1.0 - cos(r / CurvatureRadius); float D = ViewerDistance / CurvatureRadius + x * cosangle.x * cosangle.y + dot(uv, sinangle); return ViewerDistance * (uv * cosangle - x * sinangle) / D; } float3 maxscale() { float2 c = bkwtrans(-CurvatureRadius * sinangle / (1.0 + CurvatureRadius / ViewerDistance * cosangle.x * cosangle.y)); float2 a = float2(0.5, 0.5) * CeeJay_aspect; float2 lo = float2(fwtrans(float2(-a.x, c.y)).x, fwtrans(float2(c.x,-a.y)).y) / CeeJay_aspect; float2 hi = float2(fwtrans(float2(+a.x, c.y)).x, fwtrans(float2(c.x, +a.y)).y) / CeeJay_aspect; return float3((hi + lo) * CeeJay_aspect * 0.5, max(hi.x - lo.x, hi.y - lo.y)); } float2 transform(float2 coord, float2 textureSize, float2 inputSize) { coord *= textureSize / inputSize; coord = (coord - 0.5) * CeeJay_aspect * stretch.z + stretch.xy; return (bkwtrans(coord) / float2(Overscan, Overscan) / CeeJay_aspect + 0.5) * inputSize / textureSize; } float corner(float2 coord, float2 textureSize, float2 inputSize) { coord *= textureSize / inputSize; coord = (coord - 0.5) * float2(Overscan, Overscan) + 0.5; coord = min(coord, 1.0 - coord) * CeeJay_aspect; float2 cdist = float2(CornerSize, CornerSize); coord = (cdist - min(coord, cdist)); float dist = sqrt(dot(coord, coord)); return clamp((cdist.x-dist) * 1000.0, 0.0, 1.0); } // Calculate the influence of a scanline on the current pixel. // // 'distance' is the distance in texture coordinates from the current // pixel to the scanline in question. // 'color' is the colour of the scanline at the horizontal location of // the current pixel. float4 scanlineWeights(float distance, float4 color) { // "wid" controls the width of the scanline beam, for each RGB channel // The "weights" lines basically specify the formula that gives // you the profile of the beam, i.e. the intensity as // a function of distance from the vertical center of the // scanline. In this case, it is gaussian if width=2, and // becomes nongaussian for larger widths. Ideally this should // be normalized so that the integral across the beam is // independent of its width. That is, for a narrower beam // "weights" should have a higher peak at the center of the // scanline than for a wider beam. if (!ScanlineGaussian) { float4 wid = 0.3 + 0.1 * pow(abs(color), 3.0); float4 weights = float4(distance / wid); return 0.4 * exp(-weights * weights) / wid; } else { float4 wid = 2.0 * pow(abs(color), 4.0) + 2.0; float4 weights = (distance / 0.3).xxxx; return 1.4 * exp(-pow(abs(weights * rsqrt(0.5 * wid)), abs(wid))) / (0.2 * wid + 0.6); } } float3 AdvancedCRTPass(float4 position : SV_Position, float2 tex : TEXCOORD) : SV_Target { // Here's a helpful diagram to keep in mind while trying to // understand the code: // // | | | | | // ------------------------------- // | | | | | // | 01 | 11 | 21 | 31 | <-- current scanline // | | @ | | | // ------------------------------- // | | | | | // | 02 | 12 | 22 | 32 | <-- next scanline // | | | | | // ------------------------------- // | | | | | // // Each character-cell represents a pixel on the output // surface, "@" represents the current pixel (always somewhere // in the bottom half of the current scan-line, or the top-half // of the next scanline). The grid of lines represents the // edges of the texels of the underlying texture. float Input_ratio = ceil(256 * Resolution); float2 Resolution = float2(Input_ratio, Input_ratio); float2 rubyTextureSize = Resolution; float2 rubyInputSize = Resolution; float2 rubyOutputSize = BUFFER_SCREEN_SIZE; float2 orig_xy = Curvature ? transform(tex, rubyTextureSize, rubyInputSize) : tex; float cval = corner(orig_xy, rubyTextureSize, rubyInputSize); // Of all the pixels that are mapped onto the texel we are // currently rendering, which pixel are we currently rendering? float2 ratio_scale = orig_xy * rubyTextureSize - 0.5; float filter = fwidth(ratio_scale.y); float2 uv_ratio = frac(ratio_scale); // Snap to the center of the underlying texel. float2 xy = (floor(ratio_scale) + 0.5) / rubyTextureSize; // Calculate Lanczos scaling coefficients describing the effect // of various neighbour texels in a scanline on the current // pixel. float4 coeffs = PI * float4(1.0 + uv_ratio.x, uv_ratio.x, 1.0 - uv_ratio.x, 2.0 - uv_ratio.x); // Prevent division by zero. coeffs = FIX(coeffs); // Lanczos2 kernel. coeffs = 2.0 * sin(coeffs) * sin(coeffs / 2.0) / (coeffs * coeffs); // Normalize. coeffs /= dot(coeffs, 1.0); // Calculate the effective colour of the current and next // scanlines at the horizontal location of the current pixel, // using the Lanczos coefficients above. float4 col = clamp(mul(coeffs, float4x4( TEX2D(xy + float2(-coone.x, 0.0)), TEX2D(xy), TEX2D(xy + float2(coone.x, 0.0)), TEX2D(xy + float2(2.0 * coone.x, 0.0)))), 0.0, 1.0); float4 col2 = clamp(mul(coeffs, float4x4( TEX2D(xy + float2(-coone.x, coone.y)), TEX2D(xy + float2(0.0, coone.y)), TEX2D(xy + coone), TEX2D(xy + float2(2.0 * coone.x, coone.y)))), 0.0, 1.0); #ifndef LINEAR_PROCESSING col = pow(abs(col) , Gamma); col2 = pow(abs(col2), Gamma); #endif // Calculate the influence of the current and next scanlines on // the current pixel. float4 weights = scanlineWeights(uv_ratio.y, col); float4 weights2 = scanlineWeights(1.0 - uv_ratio.y, col2); #if __RENDERER__ < 0xa000 && !__RESHADE_PERFORMANCE_MODE__ [flatten] #endif if (Oversample) { uv_ratio.y = uv_ratio.y + 1.0 / 3.0 * filter; weights = (weights + scanlineWeights(uv_ratio.y, col)) / 3.0; weights2 = (weights2 + scanlineWeights(abs(1.0 - uv_ratio.y), col2)) / 3.0; uv_ratio.y = uv_ratio.y - 2.0 / 3.0 * filter; weights = weights + scanlineWeights(abs(uv_ratio.y), col) / 3.0; weights2 = weights2 + scanlineWeights(abs(1.0 - uv_ratio.y), col2) / 3.0; } float3 mul_res = (col * weights + col2 * weights2).rgb * cval.xxx; // dot-mask emulation: // Output pixels are alternately tinted green and magenta. float3 dotMaskWeights = lerp(float3(1.0, 0.7, 1.0), float3(0.7, 1.0, 0.7), floor(mod_factor % ScanlineIntensity)); mul_res *= dotMaskWeights * float3(0.83, 0.83, 1.0) * Brightness; // Convert the image gamma for display on our output device. mul_res = pow(abs(mul_res), 1.0 / MonitorGamma); float3 color = TEX2D(orig_xy).rgb * cval.xxx; color = lerp(color, mul_res, Amount); return saturate(color); } technique AdvancedCRT { pass { VertexShader = PostProcessVS; PixelShader = AdvancedCRTPass; } }